久久建筑网(m.kkreddy.com)致力打造一个专业的建筑学习分享平台! 用户登陆 免费注册 | 每日签到 | 金币充值| 会员中心 | 上传资料
  位置提示: 主页 > 隐藏域 > 资料库 > 正文

Edge Agreement of Multi-agent System with Quantized Measurements via Directed Ed(2)

//m.kkreddy.com 15-09-30 点 击: 字体: 【

accordingtocertain??permutations,??theincidencematrixE(G)canalwaysberewrittenasE(G)=ET(G)EC(G)aswell.Sincetheco-spanningtreeedges

canbeconstructedfromthespanningtreeedgesviaalineartransformation

[3],suchthat

ET(G)T(G)=EC(G)

withT(G)=ET(G)ET(G)

[21].Wede?ne??T(1)???1ET(G)TEC(G)andrank(E(G))=N?1from

????R(G)=IT(G)(2)

andthenobtainE(G)=ET(G)R(G).ThecolumnspaceofE(G)Tisknown

asthecutspaceofGandthenullspaceofE(G)iscalledthe?owspace,whichistheorthogonalcomplementofthecutspace.Interestingly,the????rowsofR(G)formabasisofthecutspaceofandtherowsof?T(G)TIformabasisofthe?owspacerespectively[21].

Lemma1([22]):ThegraphLaplacianLG(G)ofadirectedgraphGhasatleastonezeroeigenvalueandallofthenonzeroeigenvaluesareintheopenright-halfplane.Inaddition,LG(G)hasexactlyonezeroeigenvalueifandonlyifGisquasi-stronglyconnected.

2.2ProblemFormulationandQuantizedInformation

WeconsideragroupofNnetworkedagentsandthedynamicsofthei-thagentisrepresentedby

x˙i(t)=vi(t)

v˙i(t)=f(xi(t),vi(t),t)+ui(t)(3)(4)

5


wherexi(t)∈Rnistheposition,vi(t)∈Rnisthevelocityandμi(t)∈Rnisthecontrolinput.Thenonlineartermf(xi(t),vi(t),t):Rnandsatisfythefollowingassumption.

×Rn→RnisunknownAssumption2Foranonlinearfunctionf,thereexistsnonnegativecon-stantsξ1andξ2suchthat

|f(x,v,t)?f(y,z,t)|≤ξ1?x,|xv,?y,yz|+∈ξ2Rn|v;??tz≥|,

0.

Thegoalfordesigningdistributedcontrollawμi(t)istosynchronizetheve-locitiesandpositionsoftheNnetworkedagents.

Thegenerallystudiedsecond-orderconsensusprotocolproposedin[23]isde-scribedasfollows:ui(t)=α

j∈Nj(t)?vi(t)),

fori=1,2···,N,whereα??

Naij(xj(t)?xi(t))+β

>ij0andβ>0arethecoupling??

N∈Naij(vi

strengths.Asin[12],weassumethateachagentihasonlyquantizedmeasurementsoftherelativepositionQ(xi):Rn→Rnisthequantization?xj)andvelocityinformationQ(vifunction.Asthus,theprotocol?isvj),whereQ(.modi?edas

ui(t)=α

??

NaijQ(xj(t)?xi(t))+β

(vj(t)?vi(t))(5)

j∈Nij??

NaijQ∈Ni

fori=1,2···,N.Speci?cally,thequantizercanberepresentedbyQ(ν)=

[q(ν1),q(ν2),···,q(νn)]Tforavectorν=[ν1,ν2,···,νn]T?Rn.Twotypi-calquantizationoperatorsareconsidered:uniformandlogarithmicquantizer.Foragivenδu>0,auniformquantizerqu:R→Rsatis?es|qu(a)?a|≤δu,?a∈R;foragivenδl>0,alogarithmicquantizerql:R→Rsatis-?es|ql(a)?a|≤δlquantizationinterval.|a|,?aWe∈Rde?ne.TheQpositiveconstants[qδuandδlareknown

asu(ν)=?

u(ν1),qu(ν2),···,qu(νn)]T

andQl(ν)=?[ql(ν1),ql(ν2),···,ql(T

|Qu(ν)?ν|≤

√νn)],thenthefollowingboundshold:


3.1DirectedEdgeLaplacian

TheedgeLaplacianin[3]stillremainstoanundirectednotionandisthusinadequatetohandleourproblem.ExtendingtheconceptoftheedgeLapla-ciantodirectedgraphwillbeofgreathelptounderstandmulti-agentsystemsfromthestructuralperspective.

Beforemovingon,wegivethede?nitionofthein-incidencematrixandout-incidencematrixat?rst.

De?nition3(In-incidence/Out-incidenceMatrix)TheN×Lin-incidencematrixE⊙(G)foradirectedgraphGisa{0,?1}matrixwithrowsandcolumnsindexedbynodesandedgesofG,respectively,suchthatforanedgeek=(j,i)∈E,[E⊙(G)]mk=?1form=i,[E⊙(G)]mk=0otherwise.Theout-incidencematrixisa{0,+1}matrixwith[E?(G)]nk=+1forn=j,

[E?(G)]nk=0otherwise.

Incomparisonwiththede?nitionoftheincidencematrix,wecanrewriteE(G)inthefollowingway:

E(G)=E⊙(G)+E?(G).(6)

w(G)canbede?nedasOntheotherhand,theweightedin-incidencematrixE⊙wE⊙(G)=E⊙(G)W(G),whereW(G)isadiagonalmatrixofwk.Thiswilllead

usto?ndoutanovelfactorizationofthegraphLaplacianLn(G).

Lemma4ConsideringadirectedgraphGwiththeincidencematrixE(G)

wandweightedin-incidencematrixE⊙(G),thegraphLaplacianofGhavethe

followingexpressionwLn(G)=E⊙(G)E(G)T.(7)

TwTwTPROOF.Byusing(6),wehaveEw⊙(G)E(G)=E⊙(G)E⊙(G)+E⊙(G)E?(G).

wLetEw⊙i(G),E?i(G)bethei-throwofE⊙(G)andE?(G).Accordingto

Ttheprecedingde?nition,it’sclearthat,Ew⊙i(G)E⊙j(G)=?i(G)fori=j,

TwTEw⊙i(G)E⊙j(G)=0otherwise.ThenwecancollecttermsasE⊙(G)E⊙(G)=

TD(G).Besides,wealsohaveEw⊙i(G)E?j(G)=?wkforj∈Ni,ek=(j,i)and

TwTEw⊙i(G)E?j(G)=0otherwise,whichimpliesthatE⊙(G)E?(G)=?A(G).

wwwThen,wehaveE⊙(G)E(G)T=E⊙(G)E⊙(G)T+E⊙(G)E?(G)T=D(G)?

A(G)=Ln(G).

De?nition5(DirectedEdgeLaplacian)TheedgeLaplacianofadirectedgraphGisde?nedas

wLe(G):=E(G)TE⊙(G).(8)

7


ToprovideadeeperinsightsintowhattheedgeLaplacianLe(G)o?ersintheanalysisandsynthesisofmulti-agentsystems,weproposethefollowinglemma.

Lemma6ForanydirectedgraphG,thegraphLaplacianLGandtheedgeLaplacianLe(G)havethesamenonzeroeigenvalues.IfGisquasi-stronglyconnected,thentheedgeLaplacianLe(G)containsexactlyN?1nonzeroeigen-valueswhichareallintheopenright-halfplane.

PROOF.TheprooffortheweightedversionofLe(G)canbeeasilyextendedfromlemma5ofourpreviouswork[19],thusthedetailisomittedhere.Obviously,ifG=GT,thenGhasL=N?1edgesandalltheeigenvaluesof

Le(G)arenonzero.Inthefollowingpaper,whenwedealwithaquasi-stronglyconnectedgraph,itreferstoageneraldirectedgraphG=GT∪GCunlessnoted

otherwise.

Lemma7Consideringaquasi-stronglyconnectedgraphGoforderN,theedgeLaplacianLe(G)hasL?N+1zeroeigenvaluesandzeroisasimplerootoftheminimalpolynomialofLe(G).

PROOF.Theresultcanbelightlyextendedfromlemma6ofourpreviouswork[19].

Lemma7impliesthatthelinearsystemassociatedwith?Le(G)ismarginallystable.Asthus,theweighteddirectededgeLaplacianholdsthesimilarfunc-tionsasthegraphLaplacianforanalyzingtheinteractingmulti-agentsystem.TheexplicitconnectionbetweentheedgeandgraphLaplacianhasbeenhigh-lightedbyasimilaritytransformationin[3].Actually,byusingthistransfor-mation,wecanderiveareducedmodelrepresentationfortheedgeagreementdynamics.

3.2EdgeAgreementandModelReduction

AlthoughthegraphLaplacianisaconvenientmethodtodescribethegeomet-ricinterconnectionofnetworkedagents,anotherattractivenotion,theedgeagreement,whichhasnotbeenextensivelyexplored,deservesadditionalat-tentionbecausetheedgesareadoptedtobenaturalinterpretationsoftheinformation?ow.

8


Consideringthequasi-stronglyconnectedgraphGandthemostcommonlyusedconsensusdynamics[24]describedas:

x˙=?Ln(G)?Inx

where?denotestheKroneckerproduct.Contrarytothemostexistingworks,

westudythesynchronizationproblemfromtheedgeperspectivebyusingLe.Inthisavenue,wede?netheedgestatevectoras

xe(t)=E(G)T?Inx(t)

(9)

whichrepresentsthedi?erencebetweenthestatecomponentsoftwoneigh-bouringnodes.Takingthederivativeof(9)leadto

x˙e(t)=?Le(G)?Inxe(t)

(10)

whichisreferredasedgeagreementdynamicsinthispaper.Incomparisonto

thenodeagreement(consensus),theedgeagreement,ratherthanrequiringtheconvergencetotheagreementsubspace,desirestheedgedynamics(10)convergetotheorigin,i.e.,limt→∞|xe(t)|=0.Essentially,theevolutionofanedgestatedependsonitscurrentstateandthestatesofitsadjacentedges.Besides,theedgeagreementimpliesconsensusifthedirectedgraphGhasaspanningtree[3].

Asthequasi-stronglyconnectedgraphGcanbewrittenasG=??GT∪GC,then??

wwwtheweightedin-incidencematrixcanberepresentedasE⊙(G)=E⊙(G)E⊙(G)TCviasomecertainpermutationsinlinewithE(G)=ET(G)EC(G).According

tothepartition,wecanrepresenttheedgeLaplacianintotheblockformas

T

wE⊙(G)

????

Le(G)=E(G)=

??

?

LT

e(G)EC(G)

TwE⊙

T

ET(G)(G)

T

Le(G)

C

wE⊙(G)?C

??

TwTwC

withLTe(G)=ET(G)E⊙T(G)andLe(G)=EC(G)E⊙C(G).

(11)

TheedgeLaplaciandynamics(10)canbetranslatedintoaoutputfeedbackinterconnectionofthespanningtreesubsystemHTandtheco-spanningtreesubsystemHC.Actually,byusing(11),theedgeLaplaciandynamicsxe(t)describedby(10)canberewrittenas

?

˙T?x?

x˙C(t)

(t)?

?

?

=

?

??

?

LT

e(G)

TwE⊙

T

ET(G)(G)

T

EC(G)Le(G)

C

wE⊙(G)?C

?

?xT

??In?

?

xC(t)

(t)?

?

?.

9


Asthus,onecanobtainthefollowingoutputfeedbackinterconnectionsystem:

Word文件下载:Edge Agreement of Multi-agent System with Quantized Measurements via Directed Ed(2).doc







  ※相关链接
热点排行 更多>>
· 免费农村房屋设计图 附效果图
· 结构力学视频教程[同济大学]80集
· 新农村住宅设计图3套
· 200多个施工工艺动画打包
· 全套别墅施工图纸(cad文件)
· 建筑施工手册第四版高清完整(共267M).rar
· 广联达计价软件GBQ4.0初级视频教程
· 一套别墅的施工效果图 CAD 3D模型
· 02S701 砖砌化粪池图集免费
· 05J909工程做法图集
· 12J201平屋面建筑构造
· 建筑专业标准规范大全
· 12J1工程做法图集
· 12J003室外工程图集
· cad字体全集能显示钢筋符号
· 11G329-1~3图集(合订本)
· 12G901系列图集(1-3)
· 2010广东省建筑与装饰工程综合定额(PDF版)
· 广联达安装算量软件GQI2013视频教程全集
· 建筑工程资料员一本通
· 12G614-1 砌体填充墙结构构造
· 常用建筑工程验收标准
· 豪华别墅CAD全套+室内效果图
· 三层超豪华别墅建筑和结构CAD图纸+效果
· 施工组织设计实例大全
· 2013建设工程工程量清单计价规范完整版
· 05s502图集阀门井
· 12G901-1~3
· 07FJ02-《防空地下室建筑构造》图集(PDF清晰版
· GB50268-2008 《给水排水管道工程施工及验收规
· [福建]框架核心筒结构超高层商务综合体总承包工程
· 2017年《造价管理》教材电子版
· 给排水规范大全(2016)
· 3层单家独院式别墅全套图纸(值得珍藏)
· 工程监理新人岗前培训ppt课件
· 2017年版一建-市政新思维标注考点版
· GB50500-2013全套清单规范(内含所有专业)
· 建筑老司机都懂的施工安全常识
· 12YJ1-6图集大全
· 2017年造价工程师考试用书
· 一级建造师法规17教材
· 宁夏标准图集大全
· 建筑设计资料集精华本
· 注册岩土工程师全套规范
· 公共设施施工组织设计大全
· 西南j11合订本
· 供配电历年真题
· JGJ39-2016托儿所幼儿园建筑设计规范
· 一份完整的工程案例(图纸、算量稿)
· 浙江省安装工程预算定额
· 2016年一级建造师电子版教材
· 中国暴雨统计参数图集(2006版)
· 水工设计手册第一版(八卷全)
· 西南11J图集合集
· 2015造价师考试建设工程技术与计量安装教材
· 民用建筑电气设计手册(第二版)
· 给排水实践教学及见习工程师图册
· 创意庭院
· 中国十大著名地标建筑
· 05图集电气
  • 数百万工程资料下载
    久久建筑网提供 图纸/书籍/方案/图集

  • 2002版《水利工程施工机械台时费定额
    2002版《水利工程施工机械台时费定额2002版《水利工程施工机械台时费定额2002版《水利工程施工机械

  • 复式楼装修方案dwg
    复式楼装修方案_dwg

  • DLT 5187.2-2004 火力发电厂运煤设计技术规程 第2部分
    DLT 5187.2-2004 火力发电厂运煤设计技术规程 第2部分:煤尘防治.pdf

  • 求最大重复子串.ppt
    求最大重复子串.ppt,OI论文 字符串 ACM。

  • 《梦幻西游》案例分析.ppt
    《梦幻西游》案例分析.ppt文献资料!

  • 卫生专业资格考试神经电生理(脑电图)技术考试练习题
    卫生专业资格考试神经电生理(脑电图)技术考试练习题,卫生专业资格考试神经电生理(脑电图)技术考

  • 日本佛教史
    日本佛教史。

  • GBJ13-86 室外给水设计规范
    GBJ13-86 室外给水设计规范.pdfGBJ13-86 室外给水设计规范

  • 百家讲坛之道德与法律
    百家讲坛之道德与法律.txt,百家讲坛。 “硫酸泼熊”引发的思考袁济喜 主讲人简介: 袁济喜中国人民

  • 通达信文件修改对比工具Portable.exe
    通达信文件修改对比工具Portable.exe,所有同类文件同步比较,非常方便的一款对比工具。

  • 2011昌平区初三一模数学试题(含答案)
    2011昌平区初三一模数学试题(含答案),2011中考复习资料之真题篇,新年华学校010-51663232。 金属

  • 桥涵(上册)
    桥涵(上册).pdf

  • 危险化学品安全管理条例(最新2011)
    危险化学品安全管理条例(最新2011),2011年3月发布的《危险化学品安全管理条例》。。

  • 作业十一
    作业十一,11。

  • 公务员辅导专家锁定21组经典公务员面试题
    公务员辅导专家锁定21组经典公务员面试题,公务员面试 公务员辅导专家锁定组经典公务员面试题表格 公

  • 开童装注意事项
    开童装注意事项,s。 如何做好童装零售微软中国表格 如何做好童装零售?如何开好童装店? 分享到空间分

  • 西方经济学复习要点
    西方经济学复习要点,挺全的,应该有用。 《宏微观经济学》的期末复习大纲年月日朱志芬細明?、、、、

  • 你是学生??
    最佳答案: //m.kkreddy.com 久久建筑网 是的!!!!建筑设计!! http://www.99jianzhu.

  • lecture07-2005
    lecture07-2005,代数图论--图的谱理论--最小割 与最大割 参考资料。

  • 育明教育:北京大学风景园林考研参考书,北大风景园林
    育明教育:北京大学风景园林考研参考书,北大风景园林考研复试线,北大考研专业课辅导 ,育明教育,五