accordingtocertain??permutations,??theincidencematrixE(G)canalwaysberewrittenasE(G)=ET(G)EC(G)aswell.Sincetheco-spanningtreeedges
canbeconstructedfromthespanningtreeedgesviaalineartransformation
[3],suchthat
ET(G)T(G)=EC(G)
withT(G)=ET(G)ET(G)
[21].Wede?ne??T(1)???1ET(G)TEC(G)andrank(E(G))=N?1from
????R(G)=IT(G)(2)
andthenobtainE(G)=ET(G)R(G).ThecolumnspaceofE(G)Tisknown
asthecutspaceofGandthenullspaceofE(G)iscalledthe?owspace,whichistheorthogonalcomplementofthecutspace.Interestingly,the????rowsofR(G)formabasisofthecutspaceofandtherowsof?T(G)TIformabasisofthe?owspacerespectively[21].
Lemma1([22]):ThegraphLaplacianLG(G)ofadirectedgraphGhasatleastonezeroeigenvalueandallofthenonzeroeigenvaluesareintheopenright-halfplane.Inaddition,LG(G)hasexactlyonezeroeigenvalueifandonlyifGisquasi-stronglyconnected.
2.2ProblemFormulationandQuantizedInformation
WeconsideragroupofNnetworkedagentsandthedynamicsofthei-thagentisrepresentedby
x˙i(t)=vi(t)
v˙i(t)=f(xi(t),vi(t),t)+ui(t)(3)(4)
5
wherexi(t)∈Rnistheposition,vi(t)∈Rnisthevelocityandμi(t)∈Rnisthecontrolinput.Thenonlineartermf(xi(t),vi(t),t):Rnandsatisfythefollowingassumption.
×Rn→RnisunknownAssumption2Foranonlinearfunctionf,thereexistsnonnegativecon-stantsξ1andξ2suchthat
|f(x,v,t)?f(y,z,t)|≤ξ1?x,|xv,?y,yz|+∈ξ2Rn|v;??tz≥|,
0.
Thegoalfordesigningdistributedcontrollawμi(t)istosynchronizetheve-locitiesandpositionsoftheNnetworkedagents.
Thegenerallystudiedsecond-orderconsensusprotocolproposedin[23]isde-scribedasfollows:ui(t)=α
j∈Nj(t)?vi(t)),
fori=1,2···,N,whereα??
Naij(xj(t)?xi(t))+β
>ij0andβ>0arethecoupling??
N∈Naij(vi
strengths.Asin[12],weassumethateachagentihasonlyquantizedmeasurementsoftherelativepositionQ(xi):Rn→Rnisthequantization?xj)andvelocityinformationQ(vifunction.Asthus,theprotocol?isvj),whereQ(.modi?edas
ui(t)=α
??
NaijQ(xj(t)?xi(t))+β
(vj(t)?vi(t))(5)
j∈Nij??
NaijQ∈Ni
fori=1,2···,N.Speci?cally,thequantizercanberepresentedbyQ(ν)=
[q(ν1),q(ν2),···,q(νn)]Tforavectorν=[ν1,ν2,···,νn]T?Rn.Twotypi-calquantizationoperatorsareconsidered:uniformandlogarithmicquantizer.Foragivenδu>0,auniformquantizerqu:R→Rsatis?es|qu(a)?a|≤δu,?a∈R;foragivenδl>0,alogarithmicquantizerql:R→Rsatis-?es|ql(a)?a|≤δlquantizationinterval.|a|,?aWe∈Rde?ne.TheQpositiveconstants[qδuandδlareknown
asu(ν)=?
u(ν1),qu(ν2),···,qu(νn)]T
andQl(ν)=?[ql(ν1),ql(ν2),···,ql(T
|Qu(ν)?ν|≤
√νn)],thenthefollowingboundshold:
3.1DirectedEdgeLaplacian
TheedgeLaplacianin[3]stillremainstoanundirectednotionandisthusinadequatetohandleourproblem.ExtendingtheconceptoftheedgeLapla-ciantodirectedgraphwillbeofgreathelptounderstandmulti-agentsystemsfromthestructuralperspective.
Beforemovingon,wegivethede?nitionofthein-incidencematrixandout-incidencematrixat?rst.
De?nition3(In-incidence/Out-incidenceMatrix)TheN×Lin-incidencematrixE⊙(G)foradirectedgraphGisa{0,?1}matrixwithrowsandcolumnsindexedbynodesandedgesofG,respectively,suchthatforanedgeek=(j,i)∈E,[E⊙(G)]mk=?1form=i,[E⊙(G)]mk=0otherwise.Theout-incidencematrixisa{0,+1}matrixwith[E?(G)]nk=+1forn=j,
[E?(G)]nk=0otherwise.
Incomparisonwiththede?nitionoftheincidencematrix,wecanrewriteE(G)inthefollowingway:
E(G)=E⊙(G)+E?(G).(6)
w(G)canbede?nedasOntheotherhand,theweightedin-incidencematrixE⊙wE⊙(G)=E⊙(G)W(G),whereW(G)isadiagonalmatrixofwk.Thiswilllead
usto?ndoutanovelfactorizationofthegraphLaplacianLn(G).
Lemma4ConsideringadirectedgraphGwiththeincidencematrixE(G)
wandweightedin-incidencematrixE⊙(G),thegraphLaplacianofGhavethe
followingexpressionwLn(G)=E⊙(G)E(G)T.(7)
TwTwTPROOF.Byusing(6),wehaveEw⊙(G)E(G)=E⊙(G)E⊙(G)+E⊙(G)E?(G).
wLetEw⊙i(G),E?i(G)bethei-throwofE⊙(G)andE?(G).Accordingto
Ttheprecedingde?nition,it’sclearthat,Ew⊙i(G)E⊙j(G)=?i(G)fori=j,
TwTEw⊙i(G)E⊙j(G)=0otherwise.ThenwecancollecttermsasE⊙(G)E⊙(G)=
TD(G).Besides,wealsohaveEw⊙i(G)E?j(G)=?wkforj∈Ni,ek=(j,i)and
TwTEw⊙i(G)E?j(G)=0otherwise,whichimpliesthatE⊙(G)E?(G)=?A(G).
wwwThen,wehaveE⊙(G)E(G)T=E⊙(G)E⊙(G)T+E⊙(G)E?(G)T=D(G)?
A(G)=Ln(G).
De?nition5(DirectedEdgeLaplacian)TheedgeLaplacianofadirectedgraphGisde?nedas
wLe(G):=E(G)TE⊙(G).(8)
7
ToprovideadeeperinsightsintowhattheedgeLaplacianLe(G)o?ersintheanalysisandsynthesisofmulti-agentsystems,weproposethefollowinglemma.
Lemma6ForanydirectedgraphG,thegraphLaplacianLGandtheedgeLaplacianLe(G)havethesamenonzeroeigenvalues.IfGisquasi-stronglyconnected,thentheedgeLaplacianLe(G)containsexactlyN?1nonzeroeigen-valueswhichareallintheopenright-halfplane.
PROOF.TheprooffortheweightedversionofLe(G)canbeeasilyextendedfromlemma5ofourpreviouswork[19],thusthedetailisomittedhere.Obviously,ifG=GT,thenGhasL=N?1edgesandalltheeigenvaluesof
Le(G)arenonzero.Inthefollowingpaper,whenwedealwithaquasi-stronglyconnectedgraph,itreferstoageneraldirectedgraphG=GT∪GCunlessnoted
otherwise.
Lemma7Consideringaquasi-stronglyconnectedgraphGoforderN,theedgeLaplacianLe(G)hasL?N+1zeroeigenvaluesandzeroisasimplerootoftheminimalpolynomialofLe(G).
PROOF.Theresultcanbelightlyextendedfromlemma6ofourpreviouswork[19].
Lemma7impliesthatthelinearsystemassociatedwith?Le(G)ismarginallystable.Asthus,theweighteddirectededgeLaplacianholdsthesimilarfunc-tionsasthegraphLaplacianforanalyzingtheinteractingmulti-agentsystem.TheexplicitconnectionbetweentheedgeandgraphLaplacianhasbeenhigh-lightedbyasimilaritytransformationin[3].Actually,byusingthistransfor-mation,wecanderiveareducedmodelrepresentationfortheedgeagreementdynamics.
3.2EdgeAgreementandModelReduction
AlthoughthegraphLaplacianisaconvenientmethodtodescribethegeomet-ricinterconnectionofnetworkedagents,anotherattractivenotion,theedgeagreement,whichhasnotbeenextensivelyexplored,deservesadditionalat-tentionbecausetheedgesareadoptedtobenaturalinterpretationsoftheinformation?ow.
8
Consideringthequasi-stronglyconnectedgraphGandthemostcommonlyusedconsensusdynamics[24]describedas:
x˙=?Ln(G)?Inx
where?denotestheKroneckerproduct.Contrarytothemostexistingworks,
westudythesynchronizationproblemfromtheedgeperspectivebyusingLe.Inthisavenue,wede?netheedgestatevectoras
xe(t)=E(G)T?Inx(t)
(9)
whichrepresentsthedi?erencebetweenthestatecomponentsoftwoneigh-bouringnodes.Takingthederivativeof(9)leadto
x˙e(t)=?Le(G)?Inxe(t)
(10)
whichisreferredasedgeagreementdynamicsinthispaper.Incomparisonto
thenodeagreement(consensus),theedgeagreement,ratherthanrequiringtheconvergencetotheagreementsubspace,desirestheedgedynamics(10)convergetotheorigin,i.e.,limt→∞|xe(t)|=0.Essentially,theevolutionofanedgestatedependsonitscurrentstateandthestatesofitsadjacentedges.Besides,theedgeagreementimpliesconsensusifthedirectedgraphGhasaspanningtree[3].
Asthequasi-stronglyconnectedgraphGcanbewrittenasG=??GT∪GC,then??
wwwtheweightedin-incidencematrixcanberepresentedasE⊙(G)=E⊙(G)E⊙(G)TCviasomecertainpermutationsinlinewithE(G)=ET(G)EC(G).According
tothepartition,wecanrepresenttheedgeLaplacianintotheblockformas
T
wE⊙(G)
????
Le(G)=E(G)=
??
?
LT
e(G)EC(G)
TwE⊙
T
ET(G)(G)
T
Le(G)
C
wE⊙(G)?C
??
TwTwC
withLTe(G)=ET(G)E⊙T(G)andLe(G)=EC(G)E⊙C(G).
(11)
TheedgeLaplaciandynamics(10)canbetranslatedintoaoutputfeedbackinterconnectionofthespanningtreesubsystemHTandtheco-spanningtreesubsystemHC.Actually,byusing(11),theedgeLaplaciandynamicsxe(t)describedby(10)canberewrittenas
?
˙T?x?
x˙C(t)
(t)?
?
?
=
?
??
?
LT
e(G)
TwE⊙
T
ET(G)(G)
T
EC(G)Le(G)
C
wE⊙(G)?C
?
?xT
??In?
?
xC(t)
(t)?
?
?.
9
Asthus,onecanobtainthefollowingoutputfeedbackinterconnectionsystem: