Throughasimplecalculation,wecanobtain
T=
??
?1.00?1.000.00?1.00
??
,R=
??
1.000.000.000.000.001.000.000.000.000.001.000.000.000.000.001.00?1.00?1.000.00?1.00
??
.
SupposethattheweighteddiagonalmatrixisW=diag{0.12,0.24,0.44,0.43,0.09}.Bychoosingσ=1.64,wehave
?e=L
??
0.21
?0.120.000.00
0.090.24?0.24?0.24
0.000.000.440.00
0.090.000.000.43
??
?=,LO
??
0.12
?0.120.000.000.000.24?0.24?0.240.000.000.440.000.000.000.000.43?0.090.00?0.000.00
??
.
SolvingtheLyapunovequation(17)leadsto
H=
??
2.470.160.07?0.26
0.162.860.390.45
0.070.391.14?0.01
?0.260.45?0.011.22
??
.
Directedcalculationyieldsλmax(P)=8.098,λmin(P)=0.6157,??P??=8.098,????
??T??
??PLT1??=6.7121and??R??=2.5.1UniformQuantizer
First,weconsiderthequantizedprotocol(5)withthefollowinguniformquan-tizerastheoneusedin[15]
qu(x)=δu
????
x
2
??
.
Thesimulationresultswithδu=1areshowninFig.5,fromwhichwecanseethatxe(t)andve(t)indeedconvergetoasmallneighbourhoodneartheequilibriumpoints.Toshowthee?ectofδuontheagreementerrors|ess|,wefurthertakeδu=0.01,0.1,2and3torunthesimulation.TheresultsinTab.1showsthat|ess|trendstozerowhenδu→0,whichaccordstoTheorem11.
18
Fig.5.Edgeagreementunderuniformquantizerwithδu=1.
5.2LogarithmicQuantizer
Next,weapplythefollowinglogarithmicquantizertothequantizedprotocol(5):
???????
equ(lnx)
ifx>0ifx=0ifx<0
ql=
whereδl=1?e?δu[15].Tosatisfythestabilityconstraints(23),werequire
δl<0.0301.Thesimulationresultswithδu=0.01andδl=1?e?0.01=0.01areshowninFig.6,fromwhichwecanseethatedgeagreementisindeedachievedaswellasxi(t)andvi(t)reachthedesiredagreementvalues.The
Table1
Thee?ectofδuontheagreementerrors.
δu|ess|
0.10.05
21.98
0???????equ(ln(?x))
estimationoftheconvergencerateisgivenas
|ψ|=
λmax(P)
λmax(P)
t
|zT(0)|fort≥0
withπ=0.5387.From
Fig.7,onecanseethat|zT|exponentiallyconvergetotheorigin.Toillustratethee?ectsofthequantizedintervalontheconvergencerate,wetakeδl=0.01(δu=0.01),andthesimulationconsumes11.88timeunitsforthequantizedsystemtoconverge.Further,whenwetakeδl=0.02(δu=0.0202),ittakes12.18timeunitstoconvergeandwhilechoosingδl=0.03(δu=0.0305),ittakes12.45timeunitstoreachagreement.Obviously,theseresultskeepalignwithouranalysis.Finally,whilechoosingδl=0.9933(δu=5),whichbreaksthecondition(23),thecorrespondingresultsareshowninFig.8,whereagreementcannotbeachieved.
Fig.6.Edgeagreementunderlogarithmicquantizerwithδl=0.01.
6Conclusions
Inthispaper,weproposedageneralconceptofdirectededgeLaplacianwithitsalgebraicproperties.Baseduponthenewgraph-theoretictool,wederivedamodelreductionrepresentationoftheedgeagreementmodel,whichallowsaconvenientanalysisofmulti-agentsystem.Theedgeagreementofsecond-order
20
Fig.7.Theconvergenceestimationof|zT(t)|.
Fig.8.Thetrajectoriesofxeandvearedivergencewithδl=0.9933.
nonlinearmulti-agentsystemunderquantizedmeasurementswasstudied.Un-likepreviousworks,weprovidedexplicitresultsontheedgeagreementerrorsandstabilityconstraintswiththequantizationinterval.Speci?cally,wepro-videdtheexplicitupperboundoftheradiusoftheagreementneighbourhoodfortheuniformquantizers,whichindicatesthattheradiusincreaseswiththequantizationinterval.Whileforthelogarithmicquantizers,wepointedoutthattheagentsconvergeexponentiallytothedesiredagreementequilibrium.Besides,wealsoprovidedtheestimatesoftheconvergencerate.
References
[1]Z.Li,Z.Duan,G.Chen,Dynamicconsensusoflinearmulti-agentsystems,
ControlTheory&Applications,IET5(1)(2011)19–28.[2]X.Wang,T.Liu,J.Qin,Second-orderconsensuswithunknowndynamicsvia
cyclic-small-gainmethod,IETControlTheory&Applications6(18)(2012)2748–2756.[3]D.Zelazo,M.Mesbahi,Edgeagreement:Graph-theoreticperformancebounds
andpassivityanalysis,AutomaticControl,IEEETransactionson56(3)(2011)544–555.
21
[4]D.Zelazo,M.Mesbahi,Graph-theoreticanalysisandsynthesisofrelative
sensingnetworks,AutomaticControl,IEEETransactionson56(5)(2011)971–982.
[5]D.Zelazo,S.Schuler,F.Allg¨ower,Performanceanddesignofcyclesinconsensus
networks,Systems&ControlLetters62(1)(2013)85–96.
[6]B.Besselink,H.Sandberg,K.Johansson,Modelreductionofnetworkedpassive
systemsthroughclustering,in:ControlConference(ECC),2014European,2014,pp.1069–1074.
[7]A.Kashyap,T.Ba?sar,R.Srikant,Quantizedconsensus,Automatica43(7)
(2007)1192–1203.
[8]J.Lavaei,R.M.Murray,Quantizedconsensusbymeansofgossipalgorithm,
AutomaticControl,IEEETransactionson57(1)(2012)19–32.
[9]R.Carli,F.Bullo,S.Zampieri,Quantizedaverageconsensusviadynamic
coding/decodingschemes,InternationalJournalofRobustandNonlinearControl20(2)(2010)156–175.
[10]T.Li,M.Fu,L.Xie,J.-F.Zhang,Distributedconsensuswithlimited
communicationdatarate,AutomaticControl,IEEETransactionson56(2)(2011)279–292.
[11]J.Wang,Z.Yan,Codingschemebasedonboundaryfunctionforconsensus
controlofmulti-agentsystemwithtime-varyingtopology,IETcontroltheory&applications6(10)(2012)1527–1535.
[12]D.V.Dimarogonas,K.H.Johansson,Stabilityanalysisformulti-agentsystems
usingtheincidencematrix:quantizedcommunicationandformationcontrol,Automatica46(4)(2010)695–700.
[13]F.Ceragioli,C.DePersis,P.Frasca,Discontinuitiesandhysteresisinquantized
averageconsensus,Automatica47(9)(2011)1916–1928.
[14]S.Liu,T.Li,L.Xie,M.Fu,J.-F.Zhang,Continuous-timeandsampled-data-
basedaverageconsensuswithlogarithmicquantizers,Automatica49(11)(2013)3329–3336.
[15]H.Liu,M.Cao,C.DePersis,Quantizatione?ectsonsynchronizedmotionof
teamsofmobileagentswithsecond-orderdynamics,Systems&ControlLetters61(12)(2012)1157–1167.
[16]C.D.Persis,B.Jayawardhana,Coordinationofpassivesystemsunderquantized
measurements,SIAMJournalonControlandOptimization50(6)(2012)3155–3177.
[17]M.Guo,D.V.Dimarogonas,Consensuswithquantizedrelativestate
measurements,Automatica49(8)(2013)2531–2537.
[18]W.Chen,X.Li,L.Jiao,Quantizedconsensusofsecond-ordercontinuous-time
multi-agentsystemswithadirectedtopologyviasampleddata,Automatica49(7)(2013)2236–2242.
22
[19]Z.Zeng,X.Wang,Z.Zheng,Convergenceanalysisusingtheedgelaplacian:
Robustconsensusofnonlinearmulti-agentsystemsviaissmethod,InternationalJournalofRobustandNonlinearControl,accepted.
[20]D.Zelazo,S.Schuler,F.Allgower,Cyclesandsparsedesignofconsensus
networks,in:DecisionandControl(CDC),2012IEEE51stAnnualConferenceon,IEEE,2012,pp.3808–3813.
[21]K.Thulasiraman,M.N.Swamy,Graphs:theoryandalgorithms,JohnWiley&
Sons,2011.
[22]R.W.Beard,T.W.McLain,M.A.Goodrich,E.P.Anderson,Coordinated
targetassignmentandinterceptforunmannedairvehicles,RoboticsandAutomation,IEEETransactionson18(6)(2002)911–922.
[23]W.Yu,G.Chen,M.Cao,J.Kurths,Second-orderconsensusformultiagent
systemswithdirectedtopologiesandnonlineardynamics,Systems,Man,andCybernetics,PartB:Cybernetics,IEEETransactionson40(3)(2010)881–891.
[24]R.Olfati-Saber,R.M.Murray,Consensusproblemsinnetworksofagentswith
switchingtopologyandtime-delays,AutomaticControl,IEEETransactionson49(9)(2004)1520–1533.
[25]J.B.Manges,Z.J.Cendes,Ageneralizedtree-cotreegaugeformagnetic?eld
computation,Magnetics,IEEETransactionson31(3)(1995)1342–1347.
[26]S.-H.Lee,J.-M.Jin,Applicationofthetree-cotreesplittingforimproving
matrixconditioninginthefull-wave?nite-elementanalysisofhigh-speedcircuits,MicrowaveandOpticalTechnologyLetters50(6)(2008)1476–1481.
[27]E.Nuno,R.Ortega,L.Basanez,D.Hill,Synchronizationofnetworks
ofnonidenticaleuler-lagrangesystemswithuncertainparametersandcommunicationdelays,AutomaticControl,IEEETransactionson56(4)(2011)935–941.
[28]G.F.Young,L.Scardovi,N.E.Leonard,Robustnessofnoisyconsensus
dynamicswithdirectedcommunication,in:Proceedingsofthe2010AmericanControlConference,2010,pp.6312–6317.