(t)=?LTe(G)?InxT(t)+yC(t)HT:?y(t)=?E(G)TEw(G)?Inx(t)⊙TTCTT??x˙(12)
whichisshowninFigure
2.(t)=?LCe(G)?InxC(t)+yT(t)HC:?y(t)=?E(G)TEw(G)?Inx(t)⊙CCTCC??x˙(13)
H,
Fig.2.EdgedynamicsasanoutputfeedbackinterconnectionstructurebetweenHT-subsystemandHC-subsystem.
Remark8Thedecompositionofthespanningtreeandco-spanningtreesub-graphactuallyhasbeenwildlyappliedtosolvethemagnetostaticproblems,suchastree-cotreegauging[25],?niteelementanalysis[26],inwhichthede-compositionisreferredasTree-CotreeSplitting(TCS)technique.
Asknownthatthespanningtreestructureplaysavitalroleintheanalysisofnetworkedmulti-agentsystem,butscarcelyanyliteraturescouldo?eradetailedinterpretationforthatfromthecontrolpro?les.Next,wearegoingtohighlighttheroleofthespanningtreesubgraphbyprovidingamodelreductionrepresentationintermsofthecorrespondingdynamicsonit.NoticethatET(G)T(G)=EC(G)asmentionedin(1),thereforetheco-spanningtree
statescanbereconstructedthroughthematrixT(G)as
xC(t)=T(G)T?InxT(t)(14)
whichshowstheco-spanningtreestatescanserveasaninternalfeedbackontheedgesofthespanningtreesubgraphshowninFigure3.Inthemeantime,wealsohave
xe(t)=R(G)T?InxT(t).
10(15)
?Taking
(14)into(12)leadtoareducedmodelHT
TwT
x˙T(t)=(?LT
e(G)?ET(G)E⊙C(G)T(G))?InxT(t)
ww
=?ET(G)T(E⊙(G)+E⊙(G)T(G)T)?InxT(t)TC
w=?ET(G)TE⊙(G)R(G)T?InxT(t)
?e(G)?Inx(t)=?L
T
(16)
whichcapturesthedynamicalbehaviourofthewholesystem.Inthispaper,
?e(G)=E(G)TEw(G)R(G)TastheessentialedgeLaplacian.wereferL⊙T
Fig.3.HC(t)-subsystemservesasaninternalfeedbackstate.
Inthesubsequentanalysis,thereducedmodelassociatedwiththeessentialedgeLaplacianwillplayanimportantrole.
?e(G)containsexactlyallthenonzeroLemma9TheessentialedgeLaplacianL
eigenvaluesofLe(G).Additionally,wecanconstructthefollowingLyapunovequationas
?e(G)+L?e(G)TH=IN?1HL
whereHisapositivede?nitematrix.
(17)
PROOF.Beforemovingon,weintroducethefollowingtransformationma-trix:
Se(G)=R(G)Tθe(G)
????
?
??
??
??
Se(G)
?1
=
R(G)R(G)
θe(G)
??T?1
T
R(G)?
whereθe(G)denotetheorthonormalbasisofthe?owspace,i.e.,E(G)θe(G)=0.Sincerank(E(G))=N?1,onecanobtainthatdim(θe(G))=N(E(G))andθe(G)Tθe(G)=IL?N+1.ThematrixR(G)isde?nedvia(2).Applying
11
thesimilartransformationleadto
Se(G)Le(G)Se(G)=?1????e(G)L
0L?N+1×N?1TwET(G)E⊙(G)θe(G)?0L?N+1?
Clearly,theeigenvaluesoftheblockmatrixarethesolutionof
λ(L?N+1)?.?e(G)=0detλI?L????
?e(G)hasexactlyallthenonzeroeigenvaluesofLe(G).AswhichshowsthatL
thus,wecanconstructthefollowingLyapunovequationas
?e(G)+L?e(G)TH=IN?1HL
whereHispositivede?nite.
Remark10In[3],byusingthesimilartransformationmentionedabove,theedge-descriptionsystemcouldbeseparatedintocontrollableandobservableparts.Italsopointsoutthattheminimalrealizationofthesystemcontainsonlythestatesacrosstheedgesofspanningtree.Additionally,byusingtheessentialedgeLaplacian,wecouldextremelysimplifythecomplexityoftheanalysisofmulti-agentsystems,sinceitonlypreservesthenonzeroeigenval-uesoftheedge(graph)Laplacian.Infact,similarrepresentationshavebeenimplicitlyrealizedinrecentworks[18][27][28][29].However,theseliteraturesdidnotrevealtheexplicitconnectionofthealgebraicpropertiesfromsystem-aticandstructuralview.
4QuantizedEdgeAgreementwithSecond-orderNonlinearDy-
namicsunderDirectedGraph
Whilethequantizatione?ectsonmulti-agentsystemassociatedwithundi-rectedgraphhasbeenwidelystudied,thescenarioconsideringthedirectedgraphisstillverychallenging,sincethequantizationmaycauseundesirableoscillatingbehaviourunderdirectedtopology[15].Inthissection,theedgeagreementofsecond-ordernonlinearmulti-agentsystemunderquantizedmea-
wsurementsisstudied.Toeasethenotation,wesimplyuseE,E⊙andLeinstead
wofE(G),E⊙(G)andLe(G)inthefollowingparts.
Consideringthedynamicsofthenetworkedagentsasdescribingin(3)and
12
(4),bydirectlyapplyingthequantizedprotocol(5),weobtain
??x˙i(t)?????????????=vi(t)N??j∈NiN??v˙i(t)=f(xi(t),vi(t),t)+α
+βj∈NiaijQ(xj(t)?xi(t))aijQ(vj(t)?vi(t))
Toeasethedi?cultyoftheanalysis,wetechnicallychoseα=σ2andβ=σ3(σ>0)asin[30].Thenthesystemcanbecollectedas
???x˙(t)??????=v(t)????2wTv˙(t)=F(x(t),v(t),t)?σE⊙?InQE?Inx(t)
w?σ3E⊙?InQET?Inv(t)????(18)
withx(t),v(t)andF(x(t),v(t),t)denotingthecolumnstackvectorofxi(t),vi(t)andf(xi(t),vi(t),t),respectively.
Byleft-multiplyingET?Inofbothsidesof(18),weobtain
??x˙
withxe=ET?Inx,ve=ET?Inv.=ve?v˙e=ET?InF?σ2Le?InQ(xe)?σ3Le?InQ(ve)e(19)
De?neexe=Q(xe)?xeandeve=Q(ve)?veasin[12],then(19)canbewrittenasthefollowingform:
??˙e(t)??x=ve(t)
T23v˙(t)=E?IF?σL?Ix?σLe?Inveenene????σ2Le?Inexe?σ3Le?Ineve.
TLetz=xTandω=exeTeveTvee
acompactmatrixformasfollows:(20)????T????T,thensystem(20)canberecastin
withL=???z˙=F+L?Inz+L1?Inω0LIL???,?σ2Le?σ3Le
ConsideringthenonlineartermFaswellasthezeroeigenvaluesthatLecontains,intuitiveanalysisisnotsimple.However,thereducededgeagreement
13L1=???0L?σ2Le?σ3Le0L???andF=???0ET?InF???.
model(16)willbeofgreathelp.Tobeginwith,wemakeuseofthefollowingtransformation
?1Se
?Inxe=
?
?xT???
?
?1Se
?Inve=
?
?vT???
?
?1Se
?Inexe=
?????
RRT
θe?Inexe
???1
T
???1
R?Inexe?
??
?
?1Se
?Ineve=
??T
?????
RRT
θe?Ineve
T
R?Ineve?
TThenwede?nezT=xTvTT
writteninto
??
?.
w?=ETE⊙andL.Finally,system(20)canbeOT
withLT=?
??
z˙T=FT+LT?InzT+LT1?Inω
0N?1
?
?
?
(21)
?
?
Tofurtherlookattherelationbetweenthequantizationintervalandtheedge
agreement,weproposethefollowingtheorem.
0IN?1????0N?1×L0N?1×L?
andF=,L=???.?T1?T
T2?3?2?3?ET?InF?σLe?σLe?σLO?σLO
Theorem11Consideringthequasi-stronglyconnecteddirectedgraph??Gas-??
sociatedwiththeedgeLaplacianLe,supposeQ=?PLT+LTPwithTHσH
λmin(Q)?2max(ξ1,ξ2)??P??>0.Then,underthequantizedprotocol(5),system(21)hasthefollowingconvergenceproperties:
(1):Withuniformquantizers,theagentsconvergetoaballofradius
√
????2??????zT??≤
λmin(Q)?2max(ξ1,ξ2)??P??P=
??σH?
H?
?
?,whereHisobtainedby(17).Ifσ>
??
2
+1and
(22)
whichiscentredattheagreementequilibrium;
(2):Withlogarithmicquantizers,theagentsconvergeexponentiallytothede-siredagreementequilibrium,providedthatδlsatis?es
14
δl<λmin(Q)?2max(ξ1,ξ2)??P??
λmin(P)e?π
λmax(H)
Inthemeanwhile,wenoticethat
|FT|=????T??ET?????InF??≤??
2nLδu.
Bycombining(25)and(26),onecanobtain
??22˙(z)≤?λmin(Q)????+2max(ξ,ξ)??P??|z|??zV12TTT√+2????(26)
2nLδu??PLT1??.
Clearly,theedgeagreementcanbereachedandtheradiusoftheagreementneighbourhoodisas(22).
Consideringthatz=?????RT
0(N×L?N+1)R
quantizer|Qu(a)?a|≤δl|a|,wehave
|ω|≤δl|z|≤
Combining(25)and(27),wehave
????0(N×L?N+1)?T??zT,thenforthelogarithmic??????T??δl??R??|zT|.(27)??22˙(z)≤?λmin(Q)????+2max(ξ,ξ)??P??|z|??zV12TTT??????T??+2δl??PLT1????R??|zT|2????2????=?π??zT??.
Obviously,while(23)issatis?ed,theedgeLaplaciandynamics(21)convergesexponentiallytothedesiredagreementequilibrium.
Moreover,onecanobtainthat
??2˙(z(t))≤?π??V??z??≤?TT????π
ByapplyingtheComparisonLemma[31],wehave
V(zT(t))≤e?π
λmin(P)e?π
λmin(P)r
πln
inherentnonlineardynamicsf(xi(t),vi(t),t):R×R3→R3isdescribedbyChua’scircuit
f(xi(t),vi(t),t)=(ζ(?vi1(t)+vi2(t)?l(vi1(t))),
τ(vi1(t)?vi2(t)+vi3(t)),?χvi2(t))T
wherel(vi1(t))=bvi1(t)+0.5(a?b)(|vi1(t)+1|?|vi1(t)?1|).Thesystemischaoticwhenζ=0.01,τ=0.001,χ=0.018,a=?4/3andb=?3/4.InviewofAssumption2,bycalculationonecanobtainξ1=0andξ2=4.3871×10?3[23].