A Method of Remaining Capacity Estimation for LithiumIon Battery锂离子电池剩余寿

 

HindawiPublishingCorporationAdvancesinMechanicalEngineeringVolume2013,ArticleID154831,7pageshttp://dx.doi.org/10.1155/2013/154831

ResearchArticle

AMethodofRemainingCapacityEstimationforLithium-IonBattery

JunfuLi,LixinWang,ChaoLyu,WeilinLuo,KehuaMa,andLiqiangZhang

SchoolofElectricalEngineeringandAutomation,HarbinInstituteofTechnology,Harbin150001,ChinaCorrespondenceshouldbeaddressedtoLixinWang;wlx@hit.edu.cn

Received8September2013;Revised22October2013;Accepted22October2013AcademicEditor:XiaosongHu

Copyright?2013JunfuLietal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

Combiningparticlefilter(PF)withsampleentropyfeatureofdischargevoltage,amethodofremainingcapacityestimationforlithium-ionbatteryisproposed.Thesampleentropycalculatedfromdischargevoltagecurvecanserveasanindicatorforassessingtheconditionofbattery.Underacertainworkingcondition,afunctionalrelationshipbetweensampleentropyanddischargecapacityiscreatedandestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Theresultsindicatethatthealgorithmenhancestheaccuracy.Duetotheestablishmentoffunctionsatdifferentdischargeratesandtemperaturemodification,prognosticaccuracyofdischargecapacityhasbeenimprovedundermulti-operatingworkingconditions.

1.Introduction

Withtherapiddevelopmentofindustrialtechnology,theexplorationandutilizationofnewenergyhavebeeninurgentneed.Electricvehicleoccupiesapivotalpositioninnewenergyautomobile.Batterymanagementsystem(BMS)isspeciallydesignedtoimproveefficientutilization,topreventoverchargeoroverdischarge,toprolongtheservicelife,andtomonitorthestateofthebattery.Amoresophisticatedprognosticofbatteryhealthstateismuchneededforhighrequirementsofreliability,stability,andsecurityofbatteries.Consequently,thepredictionofremainingbatterylifeisconsideredasoneofthepromisingresearchfields.Numerouspapershavereportedthestudiesonstateofcharge(SOC)andstateofhealth(SOH)whicharethefocusofbatteryPrognosticandHealthManagement(PHM).

Batterydischargecapacityreachingitscriteriawithoutanyomenleadstoadisastrousfailureinsomecases.Theaccuratepredictionofremainingusefullife(RUL)ofbatteryisessentialforlong-timeefficientuse.ThecausesofcapacityfadingareinternalfactorssuchasanodicandcathodicactivematerialchangesandSEImembraneincrassation[1,2].AccuratebatterySOCestimationisofgreatsigni-ficancetobatteryelectricvehiclesandhybridelectricvehi-cles.SOCestimationaimsatthemanagementofenergyflowsofelectricvehiclesandavoidingbatteryoverchargeor

undercharge.Leeetal.[3]proposedanExtendedKalmanFilter(EKF)methodalongwithameasurementnoisemodelanddatarejectionoflithium-ionbatterySOCestimation.Theproposedalgorithmandmodelapproachwereverifiedthroughseveralexperiments.AnadaptiveunscentedKalmanfilteringmethodtoestimateSOCoflithium-ionbatterywaspresented[4].TheproposedSOCestimationmethodhadabetteraccuracycomparedwithpreviousworks.Leeetal.[5]estimatedtheSOCandthecapacityofalithium-ionbatterywithamodifiedOCV-SOCmodel.ThemethodovercamethevariationinconventionalOCV-SOC.

Methodsofbatterycapacityestimationareproposedbasedonthefollowingtwoideas.Onemethodisfeature-based.Inonesense,asvariationsofvoltage,current,andtem-peraturecharacteristiccurvescouldreflectthebatteryagingprocessesorinternalresistancevariations,somecharactersareoftenextractedfromthem.Salkindetal.[6]proposedapracticalmethodthatresistancesobtainedbyelectrochemicalimpedancespectroscopy(EIS)measurementandcoulombcountingtechniqueswereemployedinpredictingSOCandSOH.Theadvantageoftheworkwasthattherewasnoneedtoknowpreviousdischargeorcyclinghistory.Gomezetal.[7]madeadetailedanalysisonEISandpointedoutthataginginformationcouldbeextractedfromtheparametersofEISequivalentcircuitmodel.Pincus[8]firstlyintroducedtheconceptofapproximateentropymainlytocomputethe

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

2

complexityoftimeseries.Widodoetal.[9]tooksampleentropyfeaturesobtainedfromdischargevoltagecurvesasinputsofsupportvectormachine(SVM)andrelevancevectormachine(RVM)forSOHprediction.Theresultsshowedthatthemethodproposedwasplausible.

Theotherismodel-based.Generally,faultfeatureiscloselyrelatedtotheparametersofthemodel.Correctionandadjustmentofmodelparameterscanenhancethepre-dictionaccuracy.Themodel-basedtechniquescontributetoanin-depthunderstandingofthemechanismandhavetheadvantageofreal-timefaultprediction.Amodelofbatterysystemstateisestablishedtodescribethedischargebehaviororbatteryhealthstate.Abbasetal.[10]introducedanintegratedmethodologybasedonbothphysicsoffailuremodelsandBayesianestimationmethodsforprognosisofelectricalcomponents.Anempiricalformulawasproposedtodepictdischargingbehavioroflithium-ionbatteries[11–13].SimulationresultsindicatedthatPFalgorithmwasappropriateforthepredictionofbatteryhealthstate.Sahaetal.[14]presentedseveralalgorithmsincludingARIMA,RVM,EKF,andPF.ARVM-PFframeworkhadsignificantadvantagesovertheconventionalmethodsofRULestimationlikeARIMAandEKF.

Someresearchershavealsoestablishedelectrochemicalnumericalmodelandthermalmodelforthestudyonbatteryinternalcharacteristics.PorouselectrodemodelwithliquidelectrolytewasproposedbyWestetal.[15].Thatelectrolytedepletionwastheprimarylimitingfactorofcapacitywasdemonstrated.Parketal.[16]presentedanelectrochemicalheatconductionphenomenalmodel.Abetterunderstandingofconductionphenomenaoflithium-ionbatterieswaspre-sented.Kimetal.[17]extendedone-dimensionalmodelingapproachtothreedimensionstocapturegeometricalfeaturessuchasshapesanddimensionsofcellcomponents,tosimulateoventestsandtodeterminehowalocalhotspotcanpropagatethroughthecell.Thoughsomekeybehaviorsofbatterycellscanbecapturedinthesemodels,itiscomplextodeployalargenumberofunknownparametersduetothememoryandcomputation.Lumpedbatterymodelsarelikelytobethepreferredchoicewitharelativelyfewerparameters.Asystematiccomparativestudyoftwelvelumpedbatterymodelswasconducted[18].ThedevelopedcellvoltagemodelscouldbeusedinSOCestimationinBMS.

Thisworkisconductedbythecombinationofthetwoideasmentionedabove.Inthefollowingsection,wefirstlyintroducethetheoryaboutsampleentropyandbasicuti-lizationofparticlefilterintermsofprognosticsoflithium-ionbatteryRUL.Then,wepresentthedetailedpredictionprocedure.

AdvancesinMechanicalEngineering

sampleentropyisasfollows.Foragivenseries{????},weform?????+1vectorsas

??(??)=[??(??),??(??+1),...,??(??+???1)],

for??=1to?????+1.

(1)

Thedistancebetweenvectors??(??)and??(??)isdefinedas

??????,??[??(??),??(??)]=max??????????(??+??)???(??+??)??

for??,??=1to?????+1,

??=0to???1.

Foragiven??,calculatethenumberwhen??[??(??),??(??)]<

??,for??=??,anddefinethefunction

??????(??)=

1

num{??[??(??),??(??)]<??}.(3)(2)

Then,taketheaverageof??????(??).Theresultisexpressedas

?????+1

1

??(??)=∑??????(??).

??=1??

(4)

Similarly,replace??with??+1andrepeatthestepsfromthebeginning.Afterwards,wecandeterminethetwovalues????(??)and????+1(??).Asthesamplelengthisalwayslimited,thesampleentropyisestimatedby

????+1(??)

].SampEn(??,??,??)=?ln[(5)

ThevalueofSampEn(??,??,??)iscloselycorrelatedwith??,??,and??.Thus,theproperselectedparameterscouldresultinmorereasonablestatisticalproperties.

2.2.ParticleFilter.PFisaBayesianlearningtechniqueusingMonteCarlosimulations.Theideaistodescribethesystemstateasaprobabilitydensityfunction(PDF)approximatedbyparticlesthataregeneratedfromaprioridistributionandupdatedfromobservationsthroughameasurementmodel.Modelparametersareincludedasapartofthestatevectortobetracked[11].PFframeworkcanbeappliedtoRULpredictionofbatteryduetoitsgoodstatetrackingperformance.

Actualdischargecapacityisassociatedwithmanyfactors.Itisobviousthatchargingdirectlydeterminesthedischargecapacityinonecycle.Besides,reactionproductsforminguparoundtheelectrodeswilldecomposeduringrestorrelaxationperiod,whichleadtotheincreaseofavailablecapacityinnextcycle.Primarily,consideringthemaininflu-encefactorsofbatterycapacity,thefollowingstateequationsarecasttodescribethemodelasfollows:

????+1=??1????+??2exp(????(??+1)=????(??)+V??(??),

??3

),??

??=1,2,3,

(6)(7)

2.TheoryandIntelligentPrognosticMethod

2.1.SampleEntropy.SampleentropyisdefinedasgenerationrateofnewinformationbyRichmanandMoorman[19]forthecalculationofcomplexityoftimeseries.ItcanbeexpressedasSampEn(??,??,??),where??isagiventotalnumberofdata,??isthetoleranceforacceptingmatrices,and??isthedimensionofvectors.Thespecificalgorithmof

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

where??iscycleindex,????denotesthechargecapacity,Δ????istherelaxationperiodbetweenthetwoadjacentcycles,????+1isthedischargecapacity,??1,??2,and??3areparametersofthestateequation,andV1,V2,andV3areindependentzero-meanGaussiannoiseterms.

SahaandGoebel[11]establishedameasurementmodelandregardedchargingcapacityastheobservationtoprop-agateparticles.Areasonableobservationformeasuringtheweightsofparticlesandselectivelypropagatingthemplaysanimportantroleinpredictionaccuracy.Inthecaseofourapplication,viathefittingmethod,afunctionalrelationshipofsampleentropyanddischargecapacityisestablishedtoobtainanappropriateobservation.Particularly,sampleentropyiscalculatedfromthedischargevoltagecurveofthecyclenumber??.Thecorrespondingoutputofthefunctionisusedastheobservationincycle??+1.Itisworthmentioningthatthereisnoneedtotakeotherexperimentstoobtainsuchfeatures,forthedischargevoltagecurvescanbeeasilyobtainedduringthemonitoringineachcycle.

2.3.IntelligentPrognosticMethod.Theprocedurecomprisesthefollowing.

(1)Datacollectionisasfollows.

(a)Extractbatterydischargevoltagecurvesfromtrainingdataandtheselectedparameters??and??are2and0.1,respectively.Thefunctionalrelationshipofdischargecapacityandsampleentropyiscreatedunderthecurrentoperatingcondition.

(b)Gaindischargecurrentcurves,chargingcapac-ity,andrelaxationtimeofadjacentdischargecyclesfromvalidationtestdata.Inaddition,somehistoricalcapacitydataarealsoneeded.(2)Particlefilterinitializationisasfollows.

(a)Setthestartingpredictionpoint??inproportiontothenumberofhistoricalcapacitydata.

(b)Obtaininitialparameters????(??=1,2,3)viafitting.

(c)500initialparticlesaregeneratedwithvaluesobtainedin(2)-(b)andthevariancesofnoisetermV??(??=1,2,3)areabout10,000timessmallerthan??.(3)Predictionisasfollows.

????

(a)Particles{????}??=1areupdatedby(7)andtheprioridischargecapacityvaluesincycle??+1arecalculatedthroughthoseupdatedparticles??

}??{????+1??=1.

(b)Takesampleentropyfeatureastheinputofthefunctionandcomputetheweightofeachparti-cleperdeviationbetweenthecalculatedobser-vationandpreviousdischargevoltagevalue.

3

Normalizetheveryparticlesusingthefollowingformula:

??????+1

??(????+1)

=

??

????+1(????+1)

∑??=1

??????+1(????+1)

.(8)

(c)Throughthemethodofrandomsampling,each

??

particle{????+1}????=1iscopiedorabandonedselec-tivelyaccordingtoitsweightandthennew

??

}??sample{?????+1??=1isobtained.

??

(d)Theaverageofthesample{?????+1}????=1represents

theprobabilitydensitydistributionexpectationofeachparameterin(6).Then,thefinalestima-tion????+1canbeeasilyfiguredupby(6).

(e)Repeatthestepfrom(3)-(a)to(3)-(d)untilthecapacityreachesitscriterionwhichisa30%fadingofratedcapacity.

3.ExperimentData

Thefullsetofagingdatacollectedfromcommerciallyavailable18650-sizelithium-ioncellsprovidedbyNASAAmesPrognosticsCenterofExcellencewastakenasobjectofstudy.BatteryanodeandcathodematerialsaremostlyLiNi0.8Co0.15Al0.05O2andMAG-10graphite,respectively.Theelectrolyteis1.2MLiPF6inEC:EMC(3:7wt%)andtheseparatoris25??mthickPE.

Alltestingbatterieswererunthroughdifferentworkingprofiles(charge,discharge,andimpedance).BatteriesNo.6andNo.18weretestedbythefollowingsteps:(1)chargingwascarriedoutinaconstantcurrentmodeat1.5Auntilthebatteryvoltagereached4.2V,(2)aconstantvoltagemodewastheninoperationuntilthechargecurrentdroppedto20mA,(3)batterieswereputasideforaperiodoftime,(4)impedancemeasurementwasimplementedwithanelectrochemicalimpedancespectroscopyfrequencysweepfrom0.1Hzto5kHz,(5)at24°C,dischargingwascarriedoutataconstantcurrentlevelof2Auntilthebatteryvoltagefellto2.5V,(6)thesamestepas(3),and(7)thesamestepas(4).Repeatedcharginganddischargingresultedinanacceleratedagingprocess.Theexperimentswerestoppedwhenthebatteriesreachedtheend-of-lifecriteriawhichwasa30%fadinginratedcapacity(from2Ahrto1.4Ahr).

4.ResultsandDiscussion

4.1.SingleWorkingCondition.Figure1depictsthedischargevoltagecurvesindifferentcycles.Ataconstantcurrentof2A,thevoltagedropsfrom4.2Vto2.6V.Obviously,thecurvesvaryfromcycletocycleintheagingprocesses.ItcanbeseenfromFigure1thatthelowestvoltagepointbouncesbackinstantlyattheendofdischargeandsubsequentlyrisesslowlyuntilitcomestoastop.Thetwoarrowspointouttheprocessesmentionedabove.Observingthedefinitionofsampleentropy,wecanfindthatwhenthemaximumdistancecomputedfromtheadjacentvectorsconstitutedbythesequentialsamplesisgreaterthan??,thecomplexitynumberofthecorrespondingvectorin(3)willnotchange

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

4

4.2

Voltage (V)

AdvancesinMechanical

A Method of Remaining Capacity Estimation for LithiumIon Battery锂离子电池剩余寿

Engineering

instatisticalcalculations.Otherwise,ifthenoisesignalisaddedtothesampleswithlargeramplitude,itwillbeignoredbydetection,forthedistancebetweenthedisturbedvectorsislongerthanothers.Inthatsense,sampleentropycouldcapturethefeaturesofvoltagevarianceinaconstantcurrentmode.

Asbatteryisaginggraduallyduringtheusageperiod,wefindaninterestingconnectionbetweenthesampleentropyfeatureandthedischargecapacity.Inconsequence,sampleentropycouldserveasanindicatorforassessingtheconditionofbattery.WithtrainingdataofbatteryNo.18,acubicpolynomialfittingisintroducedtofindoutthefunctionalrelationshipbetweenthem.Whentheparameter??and??aredeployedto2and0.1,respectively,abetterfittingeffectisobtainedwithareasonablestatisticalresult.

Thestartingpoint??andpredictinglengthare25and115.Figures2and3showthepredictionresultofbatteryNo.6anditserrors.Fromtheactualdischargecapacitycurve,itisevidentthatbatteryNo.6hasfadedtoitslimit1.405Ahrwhenitcyclesatcyclenumber108.ObservingFigure3,apartfromseveralpoints,mostrelativeerrorsarewithin5%.Theearlypredictionhashigherprecisionanderrorsofsomereboundpointsarelessthan2%.

ToillustratethesuperiorityofthisworkcomparedwithSahaandGoebel[11],Figure4showsthecomparativepre-dictionresult.

AsisshowedinFigure4,somekeypointsofpredictionarepointedoutbysevenarrowsonthegraphandthecontrastivepredictionapparentlyengendersagreatererror.Predictionaccuracyismeasuredbytheroot-mean-squared(RMS)errorandpeakerror.ThestatisticalfiguresrevealthatRMSerrorsofbothpredictionsare8.64%and4.30%,respectively,andthepeakerrorsare37.86%and8.28%.

Thedischargecapacityisnotonlydirectlyrelatedtochargecapacityandresttimeofadjacentcyclesbutisalsoaffectedbyactualworkingconditions.Whentheforecastingandtrainingconditions,suchthatambienttemperatureanddischargerateareinconsistent,itcanbeeasilyexpectedthattheestimationpointswilldeviatefromtheactualonesineachcycle.

4.2.MultioperatingWorkingCondition.Withoutknowingofagingmechanism,itishardtomakeaspecificillustrationthathowtheagingprocessinsidethebatteryisinfluencedbyenvironmentalfactors.But,itiscertainthatasbatteryagingprocesses,differentoperationalconditionsaccountsforthedischargecapacityfadingbehaviors.Itisrequiredtoupdateorrevisetheaforementionedfunctionproperlytosatisfytherequirementofhighaccuracywhenfacingamultioperatingworkingcondition.ThedatasetsprovidedbyNASAonlyincludeseveraldischargerates.Thus,thepaperbuildsthreefunctionstakingdifferent??-ratesundereachambienttemperatureintoaccountsummarizedinTable1,where??issampleentropyand??istheestimationcapacityusedasobservationinalgorithmPFinourmethod.

Supposethattheoperatingambienttemperatureis24°C.Itisinterestingtofindthattherelativemeandeviationsbetweenestimationvaluesanddischargecapacitiesatactual

3.83.432.6Time

First cycleSecond cycleThird cycleFourth cycle

Figure1:Batteryvoltagecurvesindifferentcyclesandthetwovoltagevariationprocesseswerepointedoutbythe

A Method of Remaining Capacity Estimation for LithiumIon Battery锂离子电池剩余寿

arrows.

2.1

Capacity (Ahr)

1.91.71.51.3Cycle (—)

Actual discharge capacity

Estimated value with observationobtained from sample entropy

Figure2:PredictionofbatteryNo.6.

0.08

Error (%)

0.060.040.02020

40

60

80Cycle (—)

100

120

140

Figure3:Relative

A Method of Remaining Capacity Estimation for LithiumIon Battery锂离子电池剩余寿

errors.

2.1

Capacity (Ahr)

1.91.71.51.3

1.1

Cycle (—)

Actual discharge capacity

Estimated value with observationobtained from sample entropyEstimated value with observationobtained from charging capacity

Figure4:Comparativesimulationresultsthroughdifferentmeth-ods.

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

Table1:Capacityestimationfunctionsunderdifferentoptionalconditions.

Dischargerate0.5C1C2C

0.20.10?0.1?0.2?0.3?0.4?0.5

5

Ambienttemperature

4C24°C24°CCapacityestimationfunction

??=(9.6169???0.4326??+0.0035??+0.0001)×10??=(?1.1240??3+0.0154??2?0.0166??+0.0018)×103??=(?7.2590??3+0.3225??2?0.0044??+0.00003)×105

Table2:RMSerrorsandpeakerrorsofbatteryNo.55.Startingpoint??10152025

RMSerror(%)

3.262.642.302.24

Peakerror(%)

13.227.076.755.63

Offset (Ahr)

0510

15202530Temperature (deg)

354045

Figure5:Offsetsatdifferenttemperature.

1.41.31.21.110.90.80.7

Table3:RMSerrorsandpeakerrorsofbatteryNo.31.Startingpoint??101215

RMSerror(%)

2.171.641.37

Peakerror(%)

5.274.223.12

Capacity (Ahr)

0102030

4050Cycle (—)

607080

ActualEstimated

Figure6:PredictionofbatteryNo.55.

1.821.781.741.71.66

5

10

15

2025Cycle (—)

30

35

40

ActualEstimated

Figure7:PredictionofbatteryNo.31.

1.61.2

0.8

0.400

5

10

15

2025Cycle (—)

303540

ActualEstimated

Figure8:PredictionofbatteryNo.39.

temperature4°Cand43°Carearound?0.38and0.02.Asamatteroffact,higherorlowertemperatureaffectstheactualdischargecapacity.Onaccountofthehigherambi-enttemperature,theinternalsubstancesaremoreactiveresultinginalargerdischargecapacity.Onthecontrary,thelowertemperaturesslowdownthephysicochemicalreactionsinsidethebatteryleadingtothefactthattheactualcapacitycannotreachthemaximum.Inaconstantdischargecurrentmode,itisreasonableandessentialtomodifythecapacityobservationsinPFalgorithm.Thus,accordingtothepreviouscalculations,afunctionalrelationshipbetweenambienttemperaturesandestimationoffsetsisestablishedthroughquadraticcurvefitting.ThefittingresultisgiveninFigure5.

Theselectedoffsetbenchmarkiszeroat24°C.Figures6and7showthepredictionresultsofbatteryNo.55(4°C,1??)andNo.31(43°C,2??).Bothtwooffsetsareseparately?0.38and0.02.Asisexpected,thepredictioncurvesarebasicallyconsistentwiththeactualones.

Tables2and3showtheRMSerrorsandpeakerrorsatdifferentpredictionstartingpoints.Theresultsindicatethatasthenumberofhistoricalcapacitydataisincreasing,errorshavethedownwardtrends.

BatteryNo.39istestedunderamultioperatingworkingcondition.Thefirstseveraldischargecyclesaretestedat24°C,2??andtheothersat44°C,0.5??.Thecorrespondingcapacityestimationfunctionshouldbeselectedinaccordancewiththeoperatingcondition.Asoneoftherelevantfunctionsisbuiltat4°C,0.5??,theactualoffsetat44°Cshouldbeincreasedto0.398ratherthan0.018inFigure5.ThepredictionresultofbatteryNo.39ispresentedinFigure8andtheRMSerroris5.78%.

Figure9showsthecontrastivepredictionresult.Withouttheconsiderationof??-rateandambienttemperature,theestimationperformsmuchworsewith27.56%RMSerror.

Capacity (Ahr)

Capacity (Ahr)

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

A Method of Remaining Capacity Estimation for LithiumIon Battery锂离子电池剩余寿命估计方法.doc下载

6

1.61.2

0.8

AdvancesinMechanicalEngineering

Capacity (Ahr)

Acknowledgments

ThisresearchisfinanciallysupportedbytheNationalNat-uralScienceFoundationofChina(no.51107021)andtheFundamentalResearchFundsfortheCentralUniversities(Grantno.HIT.NSRIF.2014021).WesincerelyappreciatethesignificanthelpontranslationbyMiss.HanWang.

0.400

5

10

15

2025Cycle (—)

303540

ActualEstimated

References

[1]Q.ZhangandR.E.White,“Capacityfadeanalysisofalithiumioncell,”JournalofPowerSources,vol.179,no.2,pp.793–798,2008.

[2]M.DubarryandB.Y.Liaw,“Identifycapacityfadingmechanism

inacommercialLiFePO4cell,”JournalofPowerSources,vol.194,no.1,pp.541–549,2009.

[3]J.Lee,O.Nam,andB.H.Cho,“Li-ionbatterySOCestimation

methodbasedonthereducedorderextendedKalmanfiltering,”JournalofPowerSources,vol.174,no.1,pp.9–15,2007.

[4]F.Sun,X.Hu,Y.Zou,andS.Li,“AdaptiveunscentedKalman

filteringforstateofchargeestimationofalithium-ionbatteryforelectricvehicles,”Energy,vol.36,no.5,pp.3531–3540,2011.[5]S.Lee,J.Kim,J.Lee,andB.H.Cho,“State-of-chargeandcap-acityestimationoflithium-ionbatteryusinganewopen-circuitvoltageversusstate-of-charge,”JournalofPowerSources,vol.185,no.2,pp.1367–1373,2008.

[6]A.J.Salkind,C.Fennie,P.Singh,T.Atwater,andD.E.Reisner,

“Determinationofstate-of-chargeandstate-of-healthofbatter-iesbyfuzzylogicmethodology,”JournalofPowerSources,vol.80,no.1,pp.293–300,1999.

[7]J.Gomez,R.Nelson,E.E.Kalu,M.H.Weatherspoon,andJ.P.

Zheng,“Equivalentcircuitmodelparametersofahigh-powerLi-ionbattery:thermalandstateofchargeeffects,”JournalofPowerSources,vol.196,no.10,pp.4826–4831,2011.

[8]S.M.Pincus,“Approximateentropyasameasureofsystem

complexity,”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,vol.88,no.6,pp.2297–2301,1991.[9]A.Widodo,M.-C.Shim,W.Caesarendra,andB.-S.Yang,“Int-elligentprognosticsforbatteryhealthmonitoringbasedonsampleentropy,”ExpertSystemswithApplications,vol.38,no.9,pp.11763–11769,2011.

[10]M.Abbas,A.A.Ferri,M.E.Orchard,andG.J.Vachtsevanos,

“Anintelligentdiagnostic/prognosticframeworkforautomo-tiveelectricalsystems,”inProceedingsoftheIEEEIntelligentVehiclesSymposium(IV’07),pp.352–357,Istanbul,Turkey,June2007.

[11]B.SahaandK.Goebel,“ModelingLi-ionbatterycapacitydep-letioninaparticlefilteringframework,”inProceedingsoftheAnnualConferenceofthePrognosticsandHealthManagementSociety,2009.

[12]K.Goebel,B.Saha,A.Saxena,J.R.Celaya,andJ.P.Christopher-sen,“Prognosticsinbatteryhealthmanagement,”IEEEInstru-mentationandMeasurementMagazine,vol.11,no.4,pp.33–40,2008.

[13]S.Saha,B.Saha,andK.Goebel,“Distributedprognostichealth

managementwithGaussianprocessregression,”inProceedingsoftheConferenceoftheSocietyforMachineryFailurePreventionTechnology(MFPT’09),April2009.

[14]B.Saha,K.Goebel,andJ.Christophersen,“Comparisonofpro-gnosticalgorithmsforestimatingremainingusefullifeofbat-teries,”TransactionsoftheInstituteofMeasurementandControl,vol.31,no.3-4,pp.293–308,2009.

Figure9:Comparativeprediction.

Alargeamountofdischargedatasetswillberequiredmainlyforestablishmentofasetofcapacityestimationfunctions.Thechoiceofaproperfunctioninaccordancewiththeworkingconditionisnecessaryfortheimplementofalgorithm.Otherwise,ittakesaboutaperiodof200msproportionaltothenumberofestimationpointstocompletepredictionforeachcycle.

5.Conclusions

Thispaperfocusesondevelopinganintelligentpredictionmethodofbatterycapacitythroughparticlefilterandsampleentropy.Underacertainoptionalcondition,afunctionalrelationshipofsampleentropyanddischargecapacityiscre-ated.TheestimationscomputedfromthefunctionaretakenasobservationstopropagateparticlesinPF.Whenfacingamultioperatingworkingcondition,thispaperbuildsthreefunctionsconsideringdifferent??-ratesunderdifferentambi-enttemperatures.Itisakeypointtoselectacorrespondingcapacityestimationfunctionandtomodifytheobservationbytemperature.Onaccountofgoodtrackingcapabilities,PFalgorithmisappliedtodeterminetheunknownparametersandfulfillthepredictionwithbetterstatisticalcalculations.Thepredictionresultcanreflectthecapacityfadingbehaviorsandhasahigheraccuracywithnotmorethan5%RMSerrorofbatteryNo.6.Comparedwithothermethods,prognosticaccuracyhasbeengreatlyimprovedunderalargerangeofcyclingconditionswithlessthan6%RMSerror.

Inaddition,thoughthepredictionresultshavebeensatisfactory,therestillleavesconsiderableroomforimprove-ments.Ourmethodisnotfitforpracticalapplicationnow,fortheambienttemperatureand??-ratesareconstantsinonecycleinourwork.Whenfacingadynamiccycle,suchasacomplexcurrent,itsimpactoncapacitycouldbeequivalentlyseenasaconstantone,whichseemstobeaconsiderablesolution.Withanimprovingunderstandingoftheseimpactsonbatterycapacity,theprognosticperformancecanbefurtherrefined.

ConflictofInterests

Theauthorsdeclarethatthereisnoconflictofinterestsregardingthepublicationofthispaper.

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

AdvancesinMechanicalEngineering

[15]K.West,T.Jacobsen,andS.Atlung,“Modelingofporousinser-

tionelectrodeswithliquidelectrolyte,”JournaloftheElectro-chemicalSociety,vol.129,no.7,pp.1480–1485,1982.

[16]M.Park,X.Zhang,M.Chung,G.B.Less,andA.M.Sastry,“A

reviewofconductionphenomenainLi-ionbatteries,”JournalofPowerSources,vol.195,no.24,pp.7904–7929,2010.

[17]G.H.Kim,A.Pesaran,andR.Spotnitz,“Athree-dimensional

thermalabusemodelforlithium-ioncells,”JournalofPowerSources,vol.170,no.2,pp.476–489,2007.

[18]X.Hu,S.Li,andH.Peng,“Acomparativestudyofequivalent

circuitmodelsforLi-ionbatteries,”JournalofPowerSources,vol.198,pp.359–367,2012.

[19]J.S.RichmanandJ.R.Moorman,“Physiologicaltime-series

analysisusingapproximateandsampleentropy,”AmericanJour-nalofPhysiology:HeartandCirculatoryPhysiology,vol.278,no.6,pp.H2039–H2049,2000.7

Downloaded from ade.sagepub.com at Dalian Uni of Technology on March 29, 2016

久久建筑网m.kkreddy.com提供大量:建筑图纸、施工方案、工程书籍、建筑论文、合同表格、标准规范、CAD图纸等内容。


TOP最近更新内容

    语言学概论笔记 2013 3月二级c无纸化题库 郭硕鸿 电动力学 山东省威海市2011届高三模拟考试(数学文) 建筑装饰装修工程施工质量验收规范(GB5021 富士康科技公司基础IE培训--现场改善.ppt 系统防雷方案 刑法的二十个钻石考点 【阮齐林】 DLT 1080.4-2010 电力企业应用集成 配电管 南京理工大学考研计算机复试上机题目 梁凯恩 ——《福布斯导师商学院》精华 宋鸿兵语录 德隆的资本运作与行业整合 ANSYS工程结构数值分析命令查询表 PS技术 在学校里 学三年 也学不到这么多x